Vagal nerve stimulation
Noninvasive vagal nerve stimulation reliably reduces stress responses and shows promising but still emerging potential in the management of somatization, pending larger targeted clinical trials.
This journal club reviewed the current evidence on vagal nerve stimulation (VNS) for stress reduction and its potential application in somatization disorders. Drawing on a systematic literature review performed with Consensus AI and validated by academic review, the presentation highlighted strong evidence that both invasive and noninvasive VNS reduce sympathetic arousal, modulate the HPA axis, suppress pro-inflammatory cytokines, and restore stress-altered neural oscillations. Clinical studies in PTSD and depression show consistent benefits, while animal models support its anti-inflammatory and resilience-promoting effects.
For somatization, direct clinical trial data remain limited, but the overlap between stress, inflammation, and functional somatic syndromes suggests therapeutic potential. Key limitations include heterogeneity in stimulation protocols, small sample sizes, and lack of standardized biomarkers for response prediction. Future research should focus on large-scale clinical trials in somatic symptom populations, biomarker development, and protocol standardization. At present, VNS—particularly noninvasive approaches—shows strong promise as an adjunctive therapy for stress-related conditions and possible future application in somatization.
References:
1. Alexander L, Wood C, Gaskin P, et al. Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat. Nature Communications 2020;11 doi: 10.1038/s41467-020-19167-0
2. Bremner J, Gurel N, Jiao Y, et al. Transcutaneous vagal nerve stimulation blocks stress-induced activation of Interleukin-6 and interferon-γ in posttraumatic stress disorder: A double-blind, randomized, sham-controlled trial. Brain, Behavior, & Immunity - Health 2020;9 doi: 10.1016/j.bbih.2020.100138
3. Bremner J, Gurel N, Wittbrodt M, et al. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. Journal of Personalized Medicine 2020;10 doi: 10.3390/jpm10030119
4. Bremner J, Wittbrodt M, Gurel N, et al. Transcutaneous Cervical Vagal Nerve Stimulation in Patients with Posttraumatic Stress Disorder (PTSD): A Pilot Study of Effects on PTSD Symptoms and Interleukin-6 Response to Stress. Journal of affective disorders reports 2021;6 doi: 10.1016/j.jadr.2021.100190
5. Burrasch C, Neuser M, Teckentrup V, et al. Transcutaneous vagus nerve stimulation facilitates invigoration of effort. European Neuropsychopharmacology 2019;29 doi: 10.1016/j.euroneuro.2018.11.363
6. Cao J, Lu K-H, Powley T, et al. Vagal nerve stimulation triggers widespread responses and alters large-scale functional connectivity in the rat brain. PLoS ONE 2017;12 doi: 10.1371/journal.pone.0189518
7. Chen Y, Zhang Y, Wang J, et al. Anti‐neuroinflammation effects of transcutaneous auricular vagus nerve stimulation against depression‐like behaviors via hypothalamic α7nAchR/JAK2/STAT3/NF‐κB pathway in rats exposed to chronic unpredictable mild stress. CNS Neuroscience & Therapeutics 2023;29:2634–44. doi: 10.1111/cns.14207
8. Colzato L, Elmers J, Beste C, et al. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. Journal of Clinical Medicine 2023;12 doi: 10.3390/jcm12031198
9. Cordner Z, Li Q, Liu L, et al. Vagal gut-brain signaling mediates amygdaloid plasticity, affect, and pain in a functional dyspepsia model. JCI Insight 2021;6 doi: 10.1172/jci.insight.144046
10. Dedoncker J, Vanderhasselt M, Ottaviani C, et al. Mental health during the COVID-19 pandemic and beyond: The importance of the vagus nerve for biopsychosocial resilience. Neuroscience and Biobehavioral Reviews 2021;125:1–10. doi: 10.1016/j.neubiorev.2021.02.010
11. Ertürk Ç, Özden AV. Comparison of the Acute Effects of Auricular Vagus Nerve Stimulation and Deep Breathing Exercise on the Autonomic Nervous System Activity and Biomechanical Properties of the Muscle in Healthy People. Journal of Clinical Medicine 2025;14 doi: 10.3390/jcm14041046
12. Fang J, Rong P, Hong Y, et al. Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder. Biological Psychiatry 2016;79:266–73. doi: 10.1016/j.biopsych.2015.03.025
13. Garcia-Oscos F, Peña D, Housini M, et al. Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex. Brain, Behavior, and Immunity 2015;43:149–58. doi: 10.1016/j.bbi.2014.07.020
14. Giraudier M, Ventura-Bort C, Burger A, et al. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis. Brain Stimulation 2022;15:1378–88. doi: 10.1016/j.brs.2022.09.009
15. Grimonprez A, Raedt R, Baeken C, et al. The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neuroscience & Biobehavioral Reviews 2015;56:26–34. doi: 10.1016/j.neubiorev.2015.06.019
16. Guo B, Zhang M, Hao W, et al. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Translational Psychiatry 2023;13 doi: 10.1038/s41398-022-02297-y
17. Gurel N, Huang M, Wittbrodt M, et al. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain stimulation 2019;13:47–59. doi: 10.1016/j.brs.2019.08.002
18. Gurel N, Jiao Y, Wittbrodt M, et al. Effect of transcutaneous cervical vagus nerve stimulation on the pituitary adenylate cyclase-activating polypeptide (PACAP) response to stress: A randomized, sham controlled, double blind pilot study. Comprehensive Psychoneuroendocrinology 2020;4 doi: 10.1016/j.cpnec.2020.100012
19. Gurel N, Wittbrodt PM, Jung H, et al. Transcutaneous cervical vagal nerve stimulation reduces sympathetic responses to stress in posttraumatic stress disorder: A double-blind, randomized, sham controlled trial. Neurobiology of Stress 2020;13 doi: 10.1016/j.ynstr.2020.100264
20. Huffman W, Subramaniyan S, Rodriguiz R, et al. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimulation 2019;12:19–29. doi: 10.1016/j.brs.2018.10.005
21. Hwang YK, Oh JS. Interaction of the Vagus Nerve and Serotonin in the Gut–Brain Axis. International Journal of Molecular Sciences 2025;26 doi: 10.3390/ijms26031160
22. Kaltwasser L, Rost N, Ardizzi M, et al. Sharing the filmic experience - The physiology of socio-emotional processes in the cinema. PLoS ONE 2019;14 doi: 10.1371/journal.pone.0223259
23. Kamboj S, Peniket M, Simeonov L. A bioelectronic route to compassion: Rationale and study protocol for combining transcutaneous vagus nerve stimulation (tVNS) with compassionate mental imagery. PLOS ONE 2023;18 doi: 10.1371/journal.pone.0282861
24. Koenig J, Parzer P, Haigis N, et al. Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychological Medicine 2019;51:511–20. doi: 10.1017/S0033291719003490
25. Lespérance P, Jodoin VD, Drouin D, et al. Vagus Nerve Stimulation Modulates Inflammation in Treatment-Resistant Depression Patients: A Pilot Study. International Journal of Molecular Sciences 2024;25 doi: 10.3390/ijms25052679
26. Liu C-H, Yang M-H, Zhang G, et al. Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. Journal of Neuroinflammation 2020;17 doi: 10.1186/s12974-020-01732-5
27. Liu S, Wang Z-F, Su Y-S, et al. Somatotopic Organization and Intensity Dependence in Driving Distinct NPY-Expressing Sympathetic Pathways by Electroacupuncture. Neuron 2020;108:436–50. doi: 10.1016/j.neuron.2020.07.015
28. Martin S, Shah P, Denton C, et al. Autonomically-mediated decrease in microvascular blood flow due to mental stress and pain in sickle cell disease: A target for neuromodulatory interventions. Complementary therapies in medicine 2020;49:102334. doi: 10.1016/j.ctim.2020.102334
29. Mathew E, Tabet M, Robertson N, et al. Vagus nerve stimulation produces immediate dose-dependent anxiolytic effect in rats. Journal of affective disorders 2019 doi: 10.1016/j.jad.2019.11.090
30. Matuz A, Van Der Linden D, Kisander Z, et al. Enhanced cardiac vagal tone in mental fatigue: Analysis of heart rate variability in Time-on-Task, recovery, and reactivity. PLoS ONE 2021;16 doi: 10.1371/journal.pone.0238670
31. Moazzami K, Pearce B, Gurel N, et al. Transcutaneous vagal nerve stimulation modulates stress-induced plasma ghrelin levels: A double-blind, randomized, sham-controlled trial. Journal of affective disorders 2023 doi: 10.1016/j.jad.2023.09.015
32. Namgung U, Kim K, Jo B, et al. Correction to: Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. Journal of Neuroinflammation 2022;19 doi: 10.1186/s12974-022-02536-5
33. Namgung U, Kim K, Jo B, et al. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. Journal of Neuroinflammation 2022;19 doi: 10.1186/s12974-022-02396-z
34. Namgung U, Kim K, Jo B, et al. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. Journal of Neuroinflammation 2022;19 doi: 10.1186/s12974-022-02396-z
35. Noble L, González I, Meruva V, et al. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Translational Psychiatry 2017;7 doi: 10.1038/tp.2017.191
36. Noble L, Meruva V, Hays S, et al. Vagus nerve stimulation promotes generalization of conditioned fear extinction and reduces anxiety in rats. Brain Stimulation 2019;12:9–18. doi: 10.1016/j.brs.2018.09.013
37. Oikawa S, Kai Y, Tsuda M, et al. Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity. Clinical science 2016;130 21:1913–28. doi: 10.1042/CS20160277
38. Okonogi T, Kuga N, Yamakawa M, et al. Stress-induced vagal activity influences anxiety-relevant prefrontal and amygdala neuronal oscillations in male mice. Nature Communications 2024;15 doi: 10.1038/s41467-023-44205-y
39. Perna GR, Riva A, Defillo A, et al. Heart rate variability: Can it serve as a marker of mental health resilience? Journal of affective disorders 2020 doi: 10.1016/j.jad.2019.10.017
40. Rong P, Liu J, Wang L, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. Journal of affective disorders 2016;195:172–79. doi: 10.1016/j.jad.2016.02.031
41. Siopi E, Galerne M, Rivagorda M, et al. Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Molecular Psychiatry 2023;28:3002–12. doi: 10.1038/s41380-023-02071-6
42. Tobaldini E, Carandina A, Toschi-Dias E, et al. Depression and cardiovascular autonomic control: a matter of vagus and sex paradox. Neuroscience & Biobehavioral Reviews 2020;116:154–61. doi: 10.1016/j.neubiorev.2020.06.029
43. Tobaldini E, Toschi-Dias E, De Souza LA, et al. Cardiac and Peripheral Autonomic Responses to Orthostatic Stress During Transcutaneous Vagus Nerve Stimulation in Healthy Subjects. Journal of Clinical Medicine 2019;8 doi: 10.3390/jcm8040496
44. Tu Y, Fang J, Cao J, et al. A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder. Brain Stimulation 2018;11:501–08. doi: 10.1016/j.brs.2018.01.006
45. Wang J, Zhang Y, Chen Y, et al. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway. Journal of Neuroinflammation 2021;18 doi: 10.1186/s12974-021-02341-6
46. Warren C, Tona K-D, Ouwerkerk L, et al. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation 2019;12:635–42. doi: 10.1016/j.brs.2018.12.224
47. Wesarg C, Van Den Akker A, Oei N, et al. Childhood adversity and vagal regulation: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews 2022;143 doi: 10.1016/j.neubiorev.2022.104920
48. Wittbrodt M, Gurel N, Nye J, et al. Non-invasive vagal nerve stimulation decreases brain activity during trauma scripts. Brain stimulation 2020;13:1333–48. doi: 10.1016/j.brs.2020.07.002
49. Yaroslavsky I, Rottenberg J, Bylsma L, et al. Parasympathetic nervous system activity predicts mood repair use and its effectiveness among adolescents with and without histories of major depression. Journal of abnormal psychology 2016;125 3:323–36. doi: 10.1037/abn0000149
50. Zhang Z-Q, Guo Z, Lv X, et al. Effect and neural mechanisms of the transcutaneous vagus nerve stimulation for relapse prevention in patients with remitted major depressive disorder: protocol for a longitudinal study. BMJ Open 2022;12 doi: 10.1136/bmjopen-2021-050446